Trapping of interacting propelled colloidal particles in inhomogeneous media
نویسندگان
چکیده
منابع مشابه
Trapping of interacting propelled colloidal particles in inhomogeneous media.
A trapping mechanism for propelled colloidal particles based on an inhomogeneous drive is presented and studied by means of computer simulations. In experiments this method can be realized using photophoretic Janus particles driven by a light source, which is partially blocked by a shading mask. This leads to an accumulation of particles in the passive part. An equation for an accumulation para...
متن کاملGravitaxis of asymmetric self-propelled colloidal particles.
Many motile microorganisms adjust their swimming motion relative to the gravitational field and thus counteract sedimentation to the ground. This gravitactic behaviour is often the result of an inhomogeneous mass distribution, which aligns the microorganism similar to a buoy. However, it has been suggested that gravitaxis can also result from a geometric fore-rear asymmetry, typical for many se...
متن کاملCollective motion of self-propelled particles interacting without cohesion.
We present a comprehensive study of Vicsek-style self-propelled particle models in two and three space dimensions. The onset of collective motion in such stochastic models with only local alignment interactions is studied in detail and shown to be discontinuous (first-order-like). The properties of the ordered, collectively moving phase are investigated. In a large domain of parameter space inc...
متن کاملAnisotropic colloidal particles interacting with polymers in a good solvent.
We study the consequences of chain self-avoidance for the interaction between nonadsorbing polymers and colloidal particles of anisotropic shape, such as ellipsoids, lenses, and dumbbells. In the framework of a field theoretic operator expansion for small mesoscopic particles, we obtain exact results for self-avoiding polymers in d=2 spatial dimensions and we compare ideal and self-avoiding pol...
متن کاملDiffusion, subdiffusion, and trapping of active particles in heterogeneous media.
We study the transport properties of a system of active particles moving at constant speed in a heterogeneous two-dimensional space. The spatial heterogeneity is modeled by a random distribution of obstacles, which the active particles avoid. Obstacle avoidance is characterized by the particle turning speed γ. We show, through simulations and analytical calculations, that the mean square displa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2015
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.92.012304